Max Horn

Machine Learning in Healthcare \cdot Deep Learning \cdot Interpretable ML Time Series \cdot Probabilistic Modelling

EDUCATION

Mar. 2018 – Nov. 2021 ¹	Ph.D. in Machine Learning and Computational Biology	ETH Zürich, Switzerland
	I develop deep learning methods for real world medical time series da irregular sampling . Furthermore, I am interested in dimensionality re in order to preserve the underlying manifold structure of the data. I also insights into real world biological and chemical problems. Supervisor: Prof. Dr. Karsten M. Borgwardt	ta where I focus on the property of duction using methods from topology o use probabilistic modelling to gain
Oct. 2015 – Oct. 2017	M.Sc. IN MOLECULAR BIOSCIENCES: SYSTEMS BIOLOGY Thesis title: "Fully Bayesian Modelling of Covariate Effects on the Gut M Sparsity Induction" Supervisors: Prof. Dr. Ursula Kummer, Dr. Frederik Graw & Prof. Eran Final grade: 1.0/very good	HEIDELBERG UNIVERSITY, GERMANY Microbiome Using Horseshoe Priors for Elinav
Oct. 2012 – Oct. 2015	B.Sc. MOLECULAR BIOTECHNOLOGY Thesis title: "Clustering and Scoring the Druggability of Transient Prote Supervisor: Prof. Dr. Rebecca Wade Final grade: 1.5/very good	Heidelberg University, Germany ein Pockets"
Oct. 2004 – Jul. 2012	GENERAL UNIVERSITY ENTRANCE QUALIFICATION (ABITUR) Final grade: 1.5/very good, awards for excellent performance in mathem	GYMANSIUM GERABRONN, GERMANY matics and physics

Publications

Authors who equally contributed to a publication are marked with a [†].

Conference and Journal Publications

- 1. **Max Horn**, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set Functions for Time Series. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, 2020
- Michael Moor[†], Max Horn[†], Bastian Rieck, and Karsten Borgwardt. Topological Autoencoders. In Proceedings of the 37th International Conference on Machine Learning (ICML), 2020
- 3. Caroline Weis[†], **Max Horn**[†], Bastian Rieck[†], Aline Cuénod, Adrian Egli, and Karsten Borgwardt. Topological and kernel-based microbial phenotype prediction from MALDI-TOF mass spectra. In *Bioinformatics* 36, 2020
- 4. Stephanie L. Hyland[†], Martin Faltys[†], Matthias Hüser[†], Xinrui Lyu[†], Thomas Gumbsch[†], Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor, et al. Machine learning for early prediction of circulatory failure in the intensive care unit. In *Nature Medicine 26 (3)*, 2019
- 5. Michael Moor, Max Horn, Bastian Rieck, Damian Roqueiro, and Karsten Borgwardt. Early Recognition of Sepsis with Gaussian Process Temporal Convolutional Networks and Dynamic Time Warping. In *Proceedings of the 4th Machine Learning for Healthcare Conference (MLHC)*, 2019
- 6. Bastian Rieck[†], Matteo Togninalli[†], Christian Bock[†], Michael Moor, Max Horn, Thomas Gumbsch, and Karsten Borgwardt. Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology. In *Proceedings of the 7th International Conference on Learning Representations (ICLR)*, 2019

Expected graduation date

	7. Jotham Suez, Niv Zmora, Gili Zilberman-Schapira, Uria Mor, Mally Dori-Bachash, Stavros Bashiardes, Maya Zur, Dana Regev-Lehavi, Rotem Ben-Zeev Brik, Sara Federici, Max Horn , et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. In <i>Cell 174.6</i> , 2018
	8. Antonia Stank, Daria Kokh, Max Horn , Elena Sizikova, Rebecca Neil, Joanna Panecka, Stefan Richter, and Rebecca C Wade. TRAPP webserver: predicting protein binding site flexibility and detecting transient binding pockets. In <i>Nucleic acids research 45.W1</i> , 2017
	9. Max C. Waldhauer, Silvan N. Schmitz, Constantin Ahlmann-Eltze, Jan G. Gleixner, Carolin C. Schmelas, Anna G. Huhn, Charlotte Bunne, Magdalena Büscher, Max Horn , et al. Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation. In <i>Molecular BioSystems 11 (12)</i> , 2015
	Workshops and Preprint Publications
	10. Michael Moor, Max Horn, Karsten Borgwardt, Bastian Rieck. Challenging Euclidean Topological Autoencoders. In <i>TDA and Beyond Workshop, NeurIPS</i> , 2020
	11. Michael Moor, Max Horn , Christian Bock, Karsten Borgwardt, Bastian Rieck. Path Imputation Strategies for Signature Models. In <i>Artemiss Workshop</i> , <i>ICML</i> , 2020
	12. Caroline Weis [†] , Max Horn [†] , Bastian Rieck [†] , Aline Cuenod, Adrian Egli, Karsten Borgwardt. Kernel-based antimicrobial resistance prediction from MALDI-TOF mass spectra. In <i>Machine Learning for Global Health Workshop, ICML</i> , 2020
	13. Stefan Ganscha, Vincent Fortuin, Max Horn , Eirini Arvaniti, and Manfred Claassen. Supervised learning on synthetic data for reverse engineering gene regulatory networks from experimental time-series. In <i>bioRxiv 356477</i> , 2018
	Honors and Awards
Apr. 2017 – Jun. 2017	PROMOS SCHOLARSHIP GERMAN ACADEMIC EXCHANGE SERVICE for master's thesis project in the group of Prof. Eran Elinav, Weizmann Institute of Science, Israel
Sep. 2016 – Jan. 2017	PROMOS SCHOLARSHIP GERMAN ACADEMIC EXCHANGE SERVICE for research project in the group of Prof. Manfred Claassen, ETH Zürich, Switzerland
Jun. 2016	MINT EXCELLENCE FINALIST WIESLOCH, GERMANY Participated in the assessment center of the MINT Excellence Fellowship and was rated as one of the top 300 applicants
Nov. 2014	GRAD PRIZE WINNER INTERNATIONAL GENETICALLY ENGINEERED MACHINE (IGEM) COMPETITION as participant in the Heidelberg 2014 team we won the Grand Prize and Special Prizes of the categories: Best Foundational Advance Project, Best Supporting Software, iGEMer's prize
	Presentations
Jul. 2020	SET FUNCTIONS FOR TIME SERIES 37 TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING I presented our work on "Set Functions for Time Series" which proposes a novel way to handle irregularly-sampled time series by treating them as sets of observation tuples.
Jul. 2020	Understanding Neurons with Neurons Machine Learning Summer School 2020
	I presented my work on "Understanding Neurons with Neurons – Tackling Spike Sorting with Amortized Variational Inference" where I combine techniques from object recognition and object-centric representations with simulation-based inference to tackle the inverse problem of spike-sorting in neuroscience.
Mar. 2020	PREDICTING STABILITY OF FOSSIL-EMBEDDED DNAMLCB GROUP SEMINARIn this presentation I showed how probabilistic models can be used to model the stability of DNA in a Fossil-Embedded state. This research is part of an effort to improve long-term data storage in DNA.

	Max Horn Curriculum Vite	æ
Nov. 2019	TOPOLOGICAL AUTOENCODERS Swiss Machine Learning Day I presented our work on "Topological Autoencoders" which utilize concepts from topological data analysis in order to derive topology-preserving low-dimensional representations of high dimensional data.	Y.
Aug. 2019	CLASSIFYING THE IRREGULAR BAYER AG, BERLIN In "Classifying the Irregular – Learning with Sporadically Sampled Medical Time Series" I presented multiple efforts on how to design machine learning methods for irregularly-sampled time series which are omnipresent in the medical domain.	
Jul. 2019	SCALABLE CLASSIFICATION OF IRREGULAR-SAMPLED TIME SERIESMLCB GROUP SEMINARHere I presented preliminary results on our research into the application of set functions as a model for irregularly-sampled time series.	
Dec. 2018	DENSITY ESTIMATION IN MULTIMODAL TIME SERIES MLCB GROUP SEMINAL In "Density Estimation in Multimodal Time Series – A Joint Venture of Neural Processes and Normalizing Flows" I presented research on combining Neural Processes with Normalizing Flows for anomaly detection in time series.	R I
	Skills	
Python	Excellent knowledge in Python, in the creation of packages and in the utilization of NumPy, pandas Dask and JAX ² .	5,
C++	Good knowledge of C++ and experienced in the implementation of CUDA kernels for accelerating computations using GPUs ³ .	
Deep Learning	Excellent experience in the development and application of Deep Learning models in both TensorFlow and PyTorch ⁴ .	
Probabilistic Modelling	Excellent experience in probabilistic modelling, in particular in the utilization of probabilistic programming frameworks such as PyMC3 5 .	
Linux, HPC	Excellent technical skills in the maintenance of network infrastructures and Linux server environments and in setting up computation clusters using the SLURM scheduler.	
LaTeX	Good knowledge of LaTex and experienced in the design of figures using TikZ.	
	Software	
simple-gpu-scheduler	Command line tool for handling and distributing a queue of jobs among GPUs. \bigcirc ExpectationMax/simple_gpu_scheduler \approx 300 downloads/month	
SeFT	Implementation of Set Function for Time Series model in TensorFlow and Keras. \bigcirc BorgwardtLab/Set_Functions_for_Time_Series \approx 30 users	
ТороАЕ	Implementation of Topological Autoencoders model in PyTorch. \bigcirc BorgwardtLab/topological-autoencoders \approx 25 users	
sklearn-jax-kernels	Composable kernels for scikit-learn classes implemented in JAX. \bigcirc ExpectationMax/sklearn-jax-kernels \approx 100 downloads/month	
medical-ts-datasets	Medical time series datasets for deep learning implemented using TensorFlow Datasets.	
HorseshoeDMRegression	Models for analysing microbiome-covariate effects using hierarchical Dirichlet-Multinomial regression models with sparsity inducing Horseshoe priors.	
uea-ucr-datasets	Time series datasets of the UEA and UCR repository for deep learning frameworks.	
	 See projects simple-gpu-scheduler, sklearn-jax-kernels, and uea-ucr-datasets. See project bactSim. 	

See projects SeFT, medical-ts-datasets and topological-autoencoders. See project HorseshoeDMRegression. 4

bastSim	C++ Library for large-scale simulations of interacting bacterial populations using GPUs. © ExpectationMax/bactSim		
	Service To The Scientific Community		
	REVIEWING TDA and Beyond NeurIPS Workshop (2020), NeurIPS (2020), AAAI (2021), MLHC (2020, 2019), ISMB (2020), Swiss Machine Learning Day (2019), ECML-PKDD (2019), Springer Machine Learning (2019)		
	TEACHING Teaching assistant in Data Mining I – ETH Zürich (2019)		
	CONTRIBUTIONS TO OPEN SOURCE SOFTWARE tensorflow/tensorflow, O tensorflow/datasets, O hyperopt/hyperopt, palantir/python-language-server, O PyTorchLightning/pytorch-lightning, IDSIA/sacred		
	Extracurricular Activities		
2020	MACHINE LEARNING SUMMER SCHOOL 2020ONLINEAccepted as a full participant after competitive selection process (acceptance rate of $\approx 13\%$). Presented work on "Understanding Neurons with Neurons – Tackling Spike Sorting with Amortized Variational Inference".Participated in two weeks of lectures and discussion rounds with many core players in the field of Machine Learning.		
2019	MLFPN SUMMER SCHOOL 2019 MUTTENZ, SWITZERLAND Accepted as participant of the Machine Learning Frontiers in Precision Medicine summer school which consisted of one week of lectures and discussions with experts at the intersection of machine learning and precision medicine.		
	Personal		
Blogging	One of the most important aspects of this internet is that it allows us to share experiences and information with people of similar interests. I use my blog to help others who need to deal with similar issues and to share thoughts and summaries about research I am interested in.		
NeoVim	As a passionate programmer, I optimized my editor to fit my needs and be compatible with the projects I am working on. NeoVim has become an essential tool of my day-to-day life. I write my lab book, papers, presentations and code in NeoVim and occasionally blog about how to extend it into a full-fledged IDE using modern approaches such as language servers.		
Reverse Engineering	In my free time I enjoy working on small electronics projects, often involving reverse engineering old devices and making them function again or adapting their use case. In my most recent project I obtained an old Flip-dot display built in the 1970's, reverse engineered it in order to understand how to display digits and repurposed it as a minimal clock.		
Recreational	As recreational activities I enjoy reading popular science and science fiction books and bouldering.		