Topological Autoencoders

Michael Moor ${ }^{\dagger}$, Max Horn ${ }^{\dagger}$, Bastian Rieck ${ }^{\ddagger}$ and Karsten Borgwardt ${ }^{\ddagger}$
Machine Learning and Computational Biology Group, ETH Zurich
ICML 2020

Motivation

Motivation

Overview

Overview

Overview

Topology - The study of connectivity

Topology - The study of connectivity

Betti numbers characterize topological spaces

- β_{0} connected components
- β_{1} cycles
- β_{2} voids

Topology - The study of connectivity

Betti numbers characterize topological spaces

- β_{0} connected components
- β_{1} cycles
- β_{2} voids

Topology - The study of connectivity

Betti numbers characterize topological spaces

- β_{0} connected components
- β_{1} cycles
- β_{2} voids

Issues

- Great for manifolds (which are usually unknown)
- But instead approximated via samples
- Topology on samples is noisy

Persistent Homology (PH) ${ }^{2}$

Vietoris-Rips Complex': We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$
\emptyset=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathrm{K}
$$

$$
E:=\left\{(u, v) \mid \operatorname{dist}\left(p_{u}, p_{v}\right) \leq \epsilon\right\}
$$

[^0]
Persistent Homology (PH) ${ }^{2}$

Vietoris-Rips Complex': We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$
\emptyset=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathrm{K}
$$

$$
E:=\left\{(u, v) \mid \operatorname{dist}\left(p_{u}, p_{v}\right) \leq \epsilon\right\}
$$

[^1]
Persistent Homology (PH) ${ }^{2}$

Vietoris-Rips Complex ${ }^{1}$: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$
\emptyset=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathrm{K}
$$

$$
E:=\left\{(u, v) \mid \operatorname{dist}\left(p_{u}, p_{v}\right) \leq \epsilon\right\}
$$

[^2]
Persistent Homology (PH) ${ }^{2}$

Vietoris-Rips Complex ${ }^{1}$: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$
\emptyset=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathrm{K}
$$

$$
E:=\left\{(u, v) \mid \operatorname{dist}\left(p_{u}, p_{v}\right) \leq \epsilon\right\}
$$

[^3]
Persistent Homology (PH) ${ }^{2}$

Vietoris-Rips Complex ${ }^{1}$: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$
\emptyset=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathrm{K}
$$

$$
E:=\left\{(u, v) \mid \operatorname{dist}\left(p_{u}, p_{v}\right) \leq \epsilon\right\}
$$

[^4]
Persistent Homology (PH) ${ }^{2}$

Vietoris-Rips Complex ${ }^{1}$: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

$$
E:=\left\{(u, v) \mid \operatorname{dist}\left(p_{u}, p_{v}\right) \leq \epsilon\right\}
$$

Filtration:

$$
\emptyset=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathrm{K}
$$

[^5]
Persistent Homology (PH) ${ }^{2}$

Vietoris-Rips Complex ${ }^{1}$: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

$$
E:=\left\{(u, v) \mid \operatorname{dist}\left(p_{u}, p_{v}\right) \leq \epsilon\right\}
$$

Filtration:

$$
\emptyset=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathrm{K}
$$

[^6]
Persistent Homology II

Overview

Overview

Overview

Distance matrix and relation to persistence diagrams

Distance matrix \mathbf{A}
$\left[\begin{array}{cccc}0 & 1 & 2 & 10 \\ 1 & 0 & 8 & 2 \\ 2 & 8 & 0 & 3 \\ 10 & 2 & 3 & 0\end{array}\right]$

Distance matrix and relation to persistence diagrams

Distance matrix and relation to persistence diagrams

Notation:

$\mathbf{A}^{X}=$ distance matrix of mini-batch in data space
$\pi^{X}=$ index set resulting from PH calculation in data space
$\mathbf{A}^{X}\left[\pi^{x}\right]=$ vector of distances selected with π^{x}

Topological loss term

$$
\mathcal{L}_{t}=\mathcal{L}_{\mathcal{X} \rightarrow \mathcal{Z}}+\mathcal{L}_{\mathcal{Z} \rightarrow \mathcal{X}}
$$

$$
\mathcal{L}_{\mathcal{Z} \rightarrow \mathcal{X}}:=\frac{1}{2}\left\|\mathbf{A}^{Z}\left[\pi^{Z}\right]-\mathbf{A}^{X}\left[\pi^{Z}\right]\right\|^{2}
$$

Experiments

Spheres

FashionMNIST [Xiao et al., 2017]

Autoencoder

UMAP

Topo-AE

Insights and Summary

- Novel method for preserving topological information of the input space in dimensionality reduction

Insights and Summary

- Novel method for preserving topological information of the input space in dimensionality reduction
- Under weak theoretical assumptions our topological loss term is differentiable and allowing the training of neural networks via backpropagation.

Insights and Summary

- Novel method for preserving topological information of the input space in dimensionality reduction
- Under weak theoretical assumptions our topological loss term is differentiable and allowing the training of neural networks via backpropagation.
- We prove that approximating topological features on the mini-batch level is robust.

Insights and Summary

- Novel method for preserving topological information of the input space in dimensionality reduction
- Under weak theoretical assumptions our topological loss term is differentiable and allowing the training of neural networks via backpropagation.
- We prove that approximating topological features on the mini-batch level is robust.
- Our method was uniquely able to capture spatial relationships of nested high-dimensional spheres

Paper:

Code:

https://arxiv.org/abs/1906.00722
Credits:

- Aleph for TDA calculations https://github.com/Pseudomanifold/Aleph
- manim for animations https://github.com/3b1b/manim

References i

References

H. Edelsbrunner and J. Harer. Persistent homology-a survey. In J. E. Goodman, J. Pach, and R. Pollack, editors, Surveys on discrete and computational geometry: Twenty years later, number 453 in Contemporary Mathematics, pages 257-282. American Mathematical Society, Providence, RI, USA, 2008.
L. Vietoris. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Mathematische Annalen, 97(1):454-472, 1927.
H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.

Appendix

Bound of bottleneck distance between persistence diagrams on subsampled data

Theorem

Let X be a point cloud of cardinality n and $X^{(m)}$ be one subsample of X of cardinality m, i.e. $X^{(m)} \subseteq X$, sampled without replacement. We can bound the probability of the persistence diagrams of $X^{(m)}$ exceeding a threshold in terms of the bottleneck distance as

$$
\mathbb{P}\left(d_{\mathrm{b}}\left(\mathcal{D}^{X}, \mathcal{D}^{X^{(m)}}\right)>\epsilon\right) \leq \mathbb{P}\left(\mathrm{d}_{\mathrm{H}}\left(X, X^{(m)}\right)>2 \epsilon\right),
$$

where d_{H} refers to the Hausdorff distance between the point cloud and its subsample.

Expected value of Hausdorff distance

Theorem

Let $\mathbf{A} \in^{n \times m}$ be the distance matrix between samples of X and $X^{(m)}$, where the rows are sorted such that the first m rows correspond to the columns of the m subsampled points with diagonal elements $a_{i j}=0$. Assume that the entries $a_{i j}$ with $i>m$ are random samples following a distance distribution F_{D} with $\operatorname{supp}\left(f_{D}\right) \in_{\geq 0}$. The minimal distances δ_{i} for rows with $i>m$ follow a distribution F_{Δ}. Letting $Z:=\max _{1 \leq i \leq n} \delta_{i}$ with a corresponding distribution F_{Z}, the expected Hausdorff distance between X and $X^{(m)}$ for $m<n$ is bounded by:

$$
\mathbb{E}\left[\mathrm{d}_{\mathrm{H}}\left(X, X^{(m)}\right)\right]=\mathbb{E}_{Z \sim F_{Z}}[Z] \leq \int_{0}^{+\infty}\left(1-F_{D}(z)^{(n-1)}\right) \mathrm{d} z \leq \int_{0}^{+\infty}\left(1-F_{D}(z)^{m(n-m)}\right) \mathrm{d} z
$$

Explicit Gradient Derivation

Letting θ refer to the parameters of the encoder, we have

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\theta}} \mathcal{L}_{\mathcal{X} \rightarrow \mathcal{Z}} & =\frac{\partial}{\partial \boldsymbol{\theta}}\left(\frac{1}{2}\left\|\mathbf{A}^{X}\left[\pi^{X}\right]-\mathbf{A}^{Z}\left[\pi^{X}\right]\right\|^{2}\right) \\
& =-\left(\mathbf{A}^{X}\left[\pi^{X}\right]-\mathbf{A}^{Z}\left[\pi^{X}\right]\right)^{\top}\left(\frac{\partial \mathbf{A}^{Z}\left[\pi^{X}\right]}{\partial \boldsymbol{\theta}}\right) \\
& =-\left(\mathbf{A}^{X}\left[\pi^{X}\right]-\mathbf{A}^{Z}\left[\pi^{X}\right]\right)^{\top}\left(\sum_{i=1}^{\left|\pi^{x}\right|} \frac{\partial \mathbf{A}^{Z}\left[\pi^{x}\right]_{i}}{\partial \boldsymbol{\theta}}\right),
\end{aligned}
$$

where $\left|\pi^{X}\right|$ denotes the cardinality of a persistence pairing and $\mathbf{A}^{Z}\left[\pi^{X}\right]_{i}$ refers to the i th entry of the vector of paired distances.

Density distribution error

Definition (Density distribution error)

Let $\sigma \in_{>0}$. For a finite metric space \mathcal{S} with an associated distance $\operatorname{dist}(\cdot, \cdot)$, we evaluate the density at each point $x \in \mathcal{S}$ as

$$
\mathrm{f}_{\sigma}^{\mathcal{S}}(x):=\sum_{y \in \mathcal{S}} \exp \left(-\sigma^{-1} \operatorname{dist}(x, y)^{2}\right)
$$

where we assume without loss of generality that $\max \operatorname{dist}(x, y)=1$. We then calculate $\mathrm{f}_{\sigma}^{X}(\cdot)$ and $\mathrm{f}_{\sigma}^{Z}(\cdot)$, normalise them such that they sum to 1 , and evaluate

$$
\begin{equation*}
\mathrm{KL}_{\sigma}:=\mathrm{KL}\left(\mathrm{f}_{\sigma}^{X} \| \mathrm{f}_{\sigma}^{Z}\right) \tag{1}
\end{equation*}
$$

i.e. the Kullback-Leibler divergence between the two density estimates.

Quantification of performance

Data set	Method	KL ${ }_{0.01}$	$\mathrm{KL}_{0.1}$	KL	ℓ-MRRE	l-Cont	ℓ-Trust	MSE	ta MSE
Spheres	Isomap	0.181	0.420	0.00881	0.246	0.790	0.676	10.4	-
	PCA	0.332	0.651	0.01530	0.294	0.747	0.626	11.8	0.9610
	TSNE	0.152	0.527	0.01271	0.217	0.773	0.679	8.1	-
	UMAP	0.157	0.613	0.01658	0.250	0.752	0.635	9.3	-
	AE	0.566	0.746	0.01664	0.349	0.607	0.588	13.3	0.8155
	TopoAE	0.085	0.326	0.00694	0.272	$\underline{0.822}$	0.658	13.5	0.8681
F-MNIST	PCA	0.356	0.052	0.00069	0.057	0.968	0.917	9.1	0.1844
	TSNE	0.405	0.071	0.00198	0.020	0.967	0.974	41.3	-
	UMAP	0.424	0.065	0.00163	0.029	$\underline{0.981}$	0.959	13.7	-
	AE	0.478	0.068	0.00125	0.026	0.968	0.974	20.7	0.1020
	TopoAE	0.392	0.054	0.00100	0.032	0.980	0.956	20.5	0.1207
MNIST	PCA	0.389	0.163	0.00160	0.166	0.901	0.745	13.2	0.2227
	TSNE	$\underline{0.277}$	0.133	0.00214	$\underline{0.040}$	0.921	0.946	22.9	-
	UMAP	0.321	0.146	0.00234	0.051	0.940	0.938	14.6	-
	AE	0.620	0.155	0.00156	0.058	0.913	0.937	18.2	0.1373
	TopoAE	0.341	0.110	0.00114	0.056	0.932	0.928	19.6	0.1388

Quantification of performance - 2

Data set	Method	$\mathrm{KL}_{0.01}$	$\mathrm{KL}_{0.1}$	KL_{1}				ℓ-MRRE	ℓ-Cont
ℓ	ℓ-Trust	ℓ-RMSE	Data MSE						
	PCA	$\mathbf{0 . 5 9 1}$	$\mathbf{0 . 0 2 0}$	$\underline{\mathbf{0 . 0 0 0 2 3}}$	0.119	$\underline{\mathbf{0 . 9 3 1}}$	0.821	$\underline{\mathbf{1 7 . 7}}$	0.1482
TSNE	0.627	0.030	0.00073	$\underline{\mathbf{0 . 1 0 3}}$	0.903	$\mathbf{0 . 8 6 3}$	$\mathbf{2 5 . 6}$	-	
CIFAR	UMAP	0.617	0.026	0.00050	0.127	0.920	0.817	33.6	-
	AE	0.668	0.035	0.00062	0.132	0.851	$\underline{\mathbf{0 . 8 6 4}}$	36.3	$\mathbf{0 . 1 4 0 3}$
TopoAE	$\underline{\mathbf{0 . 5 5 6}}$	$\underline{\mathbf{0 . 0 1 9}}$	$\mathbf{0 . 0 0 0 3 1}$	$\mathbf{0 . 1 0 8}$	$\mathbf{0 . 9 2 7}$	0.845	37.9	$\underline{\mathbf{0 . 1 3 9 8}}$	

[^0]: ${ }^{1}$ Vietoris [1927]
 ${ }^{2}$ Edelsbrunner and Harer [2008]

[^1]: ${ }^{1}$ Vietoris [1927]
 ${ }^{2}$ Edelsbrunner and Harer [2008]

[^2]: ${ }^{1}$ Vietoris [1927]
 ${ }^{2}$ Edelsbrunner and Harer [2008]

[^3]: ${ }^{1}$ Vietoris [1927]
 ${ }^{2}$ Edelsbrunner and Harer [2008]

[^4]: ${ }^{1}$ Vietoris [1927]
 ${ }^{2}$ Edelsbrunner and Harer [2008]

[^5]: ${ }^{1}$ Vietoris [1927]
 ${ }^{2}$ Edelsbrunner and Harer [2008]

[^6]: ${ }^{1}$ Vietoris [1927]
 ${ }^{2}$ Edelsbrunner and Harer [2008]

