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Topology - The study of connectivity

Betti numbers characterize topological spaces

• β0 connected components

• β1 cycles

• β2 voids

Issues

• Great for manifolds (which are usually unknown)

• But instead approximated via samples

• Topology on samples is noisy
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Persistent Homology (PH)2

Vietoris-Rips Complex1: We ‘grow‘ a neighbourhood graph (simplicial complex for higher

dimensions) and keep track of the appearance and disappearance of topological features.

E :=
{

(u, v) | dist (pu, pv ) ≤ ε
}

Filtration:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K
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1Vietoris [1927]
2Edelsbrunner and Harer [2008]
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Distance matrix and relation to persistence diagrams

Distance matrix A
0 1 2 10

1 0 8 2

2 8 0 3

10 2 3 0



Index: π

Persistence diagram

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

ε1

ε2

Notation:

AX = distance matrix of mini-batch in data space

πX = index set resulting from PH calculation in data space

AX
[
πX
]

= vector of distances selected with πX
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Topological loss term

Lt = LX→Z + LZ→X

LX→Z := 1
2

∥∥AX
[
πX
]
− AZ

[
πX
]∥∥2 LZ→X := 1

2

∥∥AZ
[
πZ
]
− AX

[
πZ
]∥∥2
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Experiments



Spheres

PCA t-SNE

Autoencoder UMAP Topo-AE 10



FashionMNIST [Xiao et al., 2017]
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Insights and Summary

• Novel method for preserving topological information of the input space in dimensionality

reduction

• Under weak theoretical assumptions our topological loss term is differentiable and allowing

the training of neural networks via backpropagation.

• We prove that approximating topological features on the mini-batch level is robust.

• Our method was uniquely able to capture spatial relationships of nested high-dimensional

spheres
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For further information, please check out our

Paper: Code:

https://arxiv.org/abs/1906.00722

Credits:

• Aleph for TDA calculations https://github.com/Pseudomanifold/Aleph

• manim for animations https://github.com/3b1b/manim
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Appendix



Bound of bottleneck distance between persistence diagrams on subsampled data

Theorem

Let X be a point cloud of cardinality n and X (m) be one subsample of X of cardinality m, i.e.

X (m) ⊆ X, sampled without replacement. We can bound the probability of the persistence

diagrams of X (m) exceeding a threshold in terms of the bottleneck distance as

P
(

db

(
DX ,DX (m)

)
> ε
)
≤ P

(
dH

(
X ,X (m)

)
> 2ε

)
,

where dH refers to the Hausdorff distance between the point cloud and its subsample.



Expected value of Hausdorff distance

Theorem

Let A∈n×m be the distance matrix between samples of X and X (m), where the rows are

sorted such that the first m rows correspond to the columns of the m subsampled points with

diagonal elements aii = 0. Assume that the entries aij with i > m are random samples

following a distance distribution FD with supp(fD) ∈≥0. The minimal distances δi for rows

with i > m follow a distribution F∆. Letting Z := max1≤i≤n δi with a corresponding

distribution FZ , the expected Hausdorff distance between X and X (m) for m < n is bounded

by:

E
[
dH(X ,X (m))

]
= EZ∼FZ

[Z ] ≤
+∞∫
0

(
1− FD(z)(n−1)

)
dz ≤

+∞∫
0

(
1− FD(z)m(n−m)

)
dz



Explicit Gradient Derivation

Letting θ refer to the parameters of the encoder, we have

∂

∂θ
LX→Z =

∂

∂θ

(
1

2

∥∥AX
[
πX
]
− AZ

[
πX
]∥∥2
)

= −
(
AX
[
πX
]
− AZ

[
πX
])>(∂AZ

[
πX
]

∂θ

)

= −
(
AX
[
πX
]
− AZ

[
πX
])>|π

X |∑
i=1

∂AZ
[
πX
]
i

∂θ

,
where

∣∣πX
∣∣ denotes the cardinality of a persistence pairing and AZ

[
πX
]
i

refers to the ith entry

of the vector of paired distances.



Density distribution error

Definition (Density distribution error)

Let σ ∈>0. For a finite metric space S with an associated distance dist(·, ·), we evaluate the

density at each point x ∈ S as

fσ
S(x) :=

∑
y∈S

exp
(
−σ−1 dist(x , y)2

)
,

where we assume without loss of generality that max dist(x , y) = 1. We then calculate fσ
X (·)

and fσ
Z (·), normalise them such that they sum to 1, and evaluate

KLσ := KL
(

fσ
X ‖ fσ

Z
)
, (1)

i.e. the Kullback–Leibler divergence between the two density estimates.



Quantification of performance

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE Data MSE

Spheres

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4 –

PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610

TSNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1 –

UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3 –

AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155

TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

F-MNIST

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844

TSNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3 –

UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7 –

AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020

TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

MNIST

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227

TSNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9 –

UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6 –

AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373

TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388



Quantification of performance - 2

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE Data MSE

CIFAR

PCA 0.591 0.020 0.00023 0.119 0.931 0.821 17.7 0.1482

TSNE 0.627 0.030 0.00073 0.103 0.903 0.863 25.6 –

UMAP 0.617 0.026 0.00050 0.127 0.920 0.817 33.6 –

AE 0.668 0.035 0.00062 0.132 0.851 0.864 36.3 0.1403

TopoAE 0.556 0.019 0.00031 0.108 0.927 0.845 37.9 0.1398
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