

Topological Autoencoders

Michael Moor[†], Max Horn[†], Bastian Rieck[‡] and Karsten Borgwardt[‡]

Machine Learning and Computational Biology Group, ETH Zurich

ICML 2020

Motivation

1

Motivation

Betti numbers characterize topological spaces

- β_0 connected components
- β_1 cycles
- β_2 voids

Betti numbers characterize topological spaces

- β_0 connected components
- β_1 cycles
- β_2 voids

Betti numbers characterize topological spaces

- β_0 connected components
- β_1 cycles
- β_2 voids

Issues

- Great for manifolds (which are usually unknown)
- But instead *approximated* via samples
- Topology on samples is noisy

Vietoris-Rips Complex¹**:** We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

 $\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$

Vietoris-Rips Complex¹**:** We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

 $\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$

$$E := \left\{ (u, v) \mid \mathsf{dist}(p_u, p_v) \leq \epsilon \right\}$$

Vietoris-Rips Complex¹: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$

$$E := \big\{ (u, v) \mid \mathsf{dist} (p_u, p_v) \leq \epsilon \big\}$$

Vietoris-Rips Complex¹: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$

$$E := \big\{ (u, v) \mid \mathsf{dist} (p_u, p_v) \leq \epsilon \big\}$$

Vietoris-Rips Complex¹: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$

$$\mathsf{E} := \big\{ (u, v) \mid \mathsf{dist} (p_u, p_v) \leq \epsilon \big\}$$

Vietoris-Rips Complex¹: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

$$E := \left\{ \left(u, v
ight) \mid \mathsf{dist}\left(p_u, p_v
ight) \leq \epsilon
ight\}$$

¹Vietoris [1927] ²Edelsbrunner and Harer [2008] Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$

Vietoris-Rips Complex¹: We 'grow' a neighbourhood graph (simplicial complex for higher dimensions) and keep track of the appearance and disappearance of topological features.

 $E := \big\{ (u, v) \mid \mathsf{dist} (p_u, p_v) \leq \epsilon \big\}$

¹Vietoris [1927] ²Edelsbrunner and Harer [2008] Filtration:

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathrm{K}$$

5

Distance matrix and relation to persistence diagrams

Distance matrix **A**

Distance matrix and relation to persistence diagrams

Distance matrix and relation to persistence diagrams

Notation:

 $\mathbf{A}^{X} =$ distance matrix of mini-batch in data space $\pi^{X} =$ index set resulting from PH calculation in data space $\mathbf{A}^{X}[\pi^{X}] =$ vector of distances selected with π^{X}

Experiments

Spheres

Autoencoder

UMAP

FashionMNIST [Xiao et al., 2017]

Autoencoder

UMAP

Topo-AE

• Novel method for preserving topological information of the input space in dimensionality reduction

- Novel method for preserving topological information of the input space in dimensionality reduction
- Under weak theoretical assumptions our topological loss term is differentiable and allowing the training of neural networks via backpropagation.

- Novel method for preserving topological information of the input space in dimensionality reduction
- Under weak theoretical assumptions our topological loss term is differentiable and allowing the training of neural networks via backpropagation.
- We prove that approximating topological features on the mini-batch level is robust.

- Novel method for preserving topological information of the input space in dimensionality reduction
- Under weak theoretical assumptions our topological loss term is differentiable and allowing the training of neural networks via backpropagation.
- We prove that approximating topological features on the mini-batch level is robust.
- Our method was uniquely able to capture spatial relationships of nested high-dimensional spheres

For further information, please check out our

Paper:

Code:

https://arxiv.org/abs/1906.00722

Credits:

- Aleph for TDA calculations https://github.com/Pseudomanifold/Aleph
- manim for animations https://github.com/3b1b/manim

References

- H. Edelsbrunner and J. Harer. Persistent homology—a survey. In J. E. Goodman, J. Pach, and R. Pollack, editors, *Surveys on discrete and computational geometry: Twenty years later*, number 453 in Contemporary Mathematics, pages 257–282. American Mathematical Society, Providence, RI, USA, 2008.
- L. Vietoris. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. *Mathematische Annalen*, 97(1):454–472, 1927.
- H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.

Appendix

Theorem

Let X be a point cloud of cardinality n and $X^{(m)}$ be one subsample of X of cardinality m, i.e. $X^{(m)} \subseteq X$, sampled without replacement. We can bound the probability of the persistence diagrams of $X^{(m)}$ exceeding a threshold in terms of the bottleneck distance as

$$\mathbb{P}\Big(\mathsf{d}_{\mathsf{b}}\Big(\mathcal{D}^{X},\mathcal{D}^{X^{(m)}}\Big) > \epsilon\Big) \leq \mathbb{P}\Big(\mathsf{d}_{\mathsf{H}}\Big(X,X^{(m)}\Big) > 2\epsilon\Big),$$

where d_H refers to the Hausdorff distance between the point cloud and its subsample.

Theorem

Let $\mathbf{A} \in {}^{n \times m}$ be the distance matrix between samples of X and $X^{(m)}$, where the rows are sorted such that the first m rows correspond to the columns of the m subsampled points with diagonal elements $a_{ii} = 0$. Assume that the entries a_{ij} with i > m are random samples following a distance distribution F_D with $\operatorname{supp}(f_D) \in_{\geq 0}$. The minimal distances δ_i for rows with i > m follow a distribution F_{Δ} . Letting $Z := \max_{1 \le i \le n} \delta_i$ with a corresponding distribution F_Z , the expected Hausdorff distance between X and $X^{(m)}$ for m < n is bounded by:

$$\mathbb{E}\Big[\mathsf{d}_{\mathsf{H}}(X,X^{(m)})\Big] = \mathbb{E}_{Z\sim F_{Z}}[Z] \leq \int_{0}^{+\infty} \left(1 - F_{D}(z)^{(n-1)}\right) \mathsf{d} z \leq \int_{0}^{+\infty} \left(1 - F_{D}(z)^{m(n-m)}\right) \mathsf{d} z$$

Letting heta refer to the parameters of the *encoder*, we have

$$\begin{split} \frac{\partial}{\partial \theta} \mathcal{L}_{\mathcal{X} \to \mathcal{Z}} &= \frac{\partial}{\partial \theta} \left(\frac{1}{2} \| \mathbf{A}^{X} [\pi^{X}] - \mathbf{A}^{Z} [\pi^{X}] \|^{2} \right) \\ &= - (\mathbf{A}^{X} [\pi^{X}] - \mathbf{A}^{Z} [\pi^{X}])^{\top} \left(\frac{\partial \mathbf{A}^{Z} [\pi^{X}]}{\partial \theta} \right) \\ &= - (\mathbf{A}^{X} [\pi^{X}] - \mathbf{A}^{Z} [\pi^{X}])^{\top} \left(\sum_{i=1}^{|\pi^{X}|} \frac{\partial \mathbf{A}^{Z} [\pi^{X}]_{i}}{\partial \theta} \right) \end{split}$$

where $|\pi^{X}|$ denotes the cardinality of a persistence pairing and $\mathbf{A}^{Z}[\pi^{X}]_{i}$ refers to the *i*th entry of the vector of paired distances.

Definition (Density distribution error)

Let $\sigma \in_{>0}$. For a finite metric space S with an associated distance dist(\cdot, \cdot), we evaluate the density at each point $x \in S$ as

$$f_{\sigma}^{\mathcal{S}}(x) := \sum_{y \in \mathcal{S}} \exp\left(-\sigma^{-1}\operatorname{dist}(x, y)^{2}\right),$$

where we assume without loss of generality that max dist(x, y) = 1. We then calculate $f_{\sigma}^{X}(\cdot)$ and $f_{\sigma}^{Z}(\cdot)$, normalise them such that they sum to 1, and evaluate

$$\mathsf{KL}_{\sigma} := \mathsf{KL}\Big(\mathsf{f}_{\sigma}^{X} \parallel \mathsf{f}_{\sigma}^{Z}\Big),\tag{1}$$

i.e. the Kullback-Leibler divergence between the two density estimates.

Quantification of performance

Data set	Method	$KL_{0.01}$	$KL_{0.1}$	KL_1	ℓ -MRRE	$\ell\text{-Cont}$	$\ell ext{-Trust}$	$\ell\text{-RMSE}$	Data MSE
Spheres	lsomap	0.181	0.420	0.00881	0.246	0.790	0.676	10.4	-
	PCA	0.332	0.651	0.01530	0.294	0.747	0.626	11.8	0.9610
	TSNE	0.152	0.527	0.01271	<u>0.217</u>	0.773	<u>0.679</u>	<u>8.1</u>	-
	UMAP	0.157	0.613	0.01658	0.250	0.752	0.635	9.3	-
	AE	0.566	0.746	0.01664	0.349	0.607	0.588	13.3	<u>0.8155</u>
	ТороАЕ	<u>0.085</u>	<u>0.326</u>	<u>0.00694</u>	0.272	<u>0.822</u>	0.658	13.5	0.8681
F-MNIST	PCA	<u>0.356</u>	0.052	0.00069	0.057	0.968	0.917	<u>9.1</u>	0.1844
	TSNE	0.405	0.071	0.00198	<u>0.020</u>	0.967	0.974	41.3	-
	UMAP	0.424	0.065	0.00163	0.029	<u>0.981</u>	0.959	13.7	-
	AE	0.478	0.068	0.00125	0.026	0.968	<u>0.974</u>	20.7	<u>0.1020</u>
	TopoAE	0.392	0.054	0.00100	0.032	0.980	0.956	20.5	0.1207
MNIST	PCA	0.389	0.163	0.00160	0.166	0.901	0.745	<u>13.2</u>	0.2227
	TSNE	<u>0.277</u>	0.133	0.00214	<u>0.040</u>	0.921	<u>0.946</u>	22.9	-
	UMAP	0.321	0.146	0.00234	0.051	<u>0.940</u>	0.938	14.6	-
	AE	0.620	0.155	0.00156	0.058	0.913	0.937	18.2	<u>0.1373</u>
	ТороАЕ	0.341	<u>0.110</u>	<u>0.00114</u>	0.056	0.932	0.928	19.6	0.1388

Data set	Method	$KL_{0.01}$	$KL_{0.1}$	KL_1	<i>ℓ</i> -MRRE	$\ell ext{-Cont}$	$\ell ext{-Trust}$	$\ell\text{-RMSE}$	Data MSE
CIFAR	PCA	0.591	0.020	0.00023	0.119	<u>0.931</u>	0.821	<u>17.7</u>	0.1482
	TSNE	0.627	0.030	0.00073	<u>0.103</u>	0.903	0.863	25.6	-
	UMAP	0.617	0.026	0.00050	0.127	0.920	0.817	33.6	-
	AE	0.668	0.035	0.00062	0.132	0.851	<u>0.864</u>	36.3	0.1403
	TopoAE	<u>0.556</u>	<u>0.019</u>	0.00031	0.108	0.927	0.845	37.9	<u>0.1398</u>